Investigating the influence of catholyte salinity on seawater battery desalination > Publication | UNIST YK RESEARCH

Publication

Publication

Investigating the influence of catholyte salinity on seawater battery desalination
Author
Sanghun Park, Mayzonee Ligaray, Youngsik Kim, Kangmin Chon, Moon Son, and Kyung Hwa Cho
Journal
Desalination
Vol
506
Page
115018
Year
2021
The seawater battery (SWB) is a promising desalination technology that utilizes abundant sodium ions as an energy storage medium. Recently, the alternative desalination system, seawater battery desalination (SWB-D), was developed by placing an SWB next to the desalination compartment. This SWB-D system can desalt water while charging the SWB next to it. However, only a fixed catholyte solution has been investigated, although the catholytes impact the overall SWB-D performance. Therefore, we evaluated the effect of different catholytes on the desalination performance. High-saline reverse osmosis (RO) concentrate or brackish water exhibited excellent salt removal capability (>85.3% of sodium and >76.6% of chloride ions) with relatively short operation times (36.4 h for RO concentrate and 39.5 h for brackish water) upon charging, whereas the relatively low-saline river water showed the longest operation time (81.0 h), implying that river water should be excluded as a potential catholyte. The amount of desalinated water was marginally reduced due to osmosis through the anion exchange membrane; however, the amount of treated salt was >82.9% even after the reduction in water volume. These findings suggest that the catholyte with a resistance of >0.041 kΩ·cm can be ideal for the SWB-D.