Skip to main content
Log in

Nanocomposite quasi-solid-state electrolyte for high-safety lithium batteries

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

An Erratum to this article was published on 03 August 2017

This article has been updated

Abstract

Rechargeable lithium batteries are attractive power sources for electronic devices and are being aggressively developed for vehicular use. Nevertheless, problems with their safety and reliability must be solved for the large-scale use of lithium batteries in transportation and grid-storage applications. In this study, a unique hybrid solid-state electrolyte composed of an ionic liquid electrolyte (LiTFSI/Pyr14TFSI) and BaTiO3 nanosize ceramic particles was prepared without a polymer. The electrolyte exhibited high thermal stability, a wide electrochemical window, good ionic conductivity of 1.3 × 10−3 S·cm−1 at 30 °C, and a remarkably high lithium-ion transference number of 0.35. The solid-state LiFePO4 cell exhibited the best electrochemical properties among the reported solid-state batteries, along with a reasonable rate capability. Li/LiCoO2 cells prepared using this nanocomposite solid electrolyte exhibited high performance at both room temperature and a high temperature, confirming their potential as lithium batteries with enhanced safety and a wide range of operating temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Change history

  • 03 August 2017

    An erratum to this article has been published.

References

  1. Bruce, P. G.; Scrosati, B.; Tarascon, J. M. Nanomaterials for rechargeable lithium batteries. Angew. Chem., Int. Ed. 2008, 47, 2930–2946.

    Article  Google Scholar 

  2. Quartarone, E.; Mustarelli, P. Electrolytes for solid-state lithium rechargeable batteries: Recent advances and perspectives. Chem. Soc. Rev. 2011, 40, 2525–2540.

    Article  Google Scholar 

  3. Zhang, J. X.; Zhao, N.; Zhang, M.; Li, Y. Q.; Chu, P. K.; Guo, X. X.; Di, Z. F.; Wang, X.; Li, H. Flexible and ionconducting membrane electrolytes for solid-state lithium batteries: Dispersion of garnet nanoparticles in insulating polyethylene oxide. Nano Energy 2016, 28, 447–454.

    Article  Google Scholar 

  4. Orendorff, C. J. The role of separators in lithium-ion cell safety. Electrochem. Soc. Interface 2012, 21, 61–65.

    Article  Google Scholar 

  5. Kalhoff, J.; Eshetu, G. G.; Bresser, D.; Passerini, S. Safer electrolytes for lithium-ion batteries: State of the art and perspectives. ChemSusChem 2015, 8, 2154–2175.

    Article  Google Scholar 

  6. Nugent, J. L.; Moganty, S. S.; Archer, L. A. Nanoscale organic hybrid electrolytes. Adv. Mater. 2010, 22, 3677–3680.

    Article  Google Scholar 

  7. Galinski, M.; Lewandowski, A.; Stepniak, I. Ionic liquids as electrolytes. Electrochim. Acta 2006, 51, 5567–5580.

    Article  Google Scholar 

  8. Armand, M.; Endres, F.; MacFarlane, D. R.; Ohno, H.; Scrosati, B. Ionic-liquid materials for the electrochemical challenges of the future. Nat. Mater. 2009, 8, 621–629.

    Article  Google Scholar 

  9. Sakaebe, H.; Matsumoto, H. N-Methyl-N-propylpiperidinium bis(trifluoromethanesulfonyl) imide (PP13–TFSI)–novel electrolyte base for Li battery. Electrochem. Commun. 2003, 5, 594–598.

    Google Scholar 

  10. Noda, A.; Hayamizu, K.; Watanabe, M. Pulsed-gradient spin-echo 1H and 19F NMR ionic diffusion coefficient, viscosity, and ionic conductivity of non-chloroaluminate roomtemperature ionic liquids. J. Phys. Chem. B 2001, 105, 4603–4610.

    Article  Google Scholar 

  11. Fraser, K. J.; Izgorodina, E. I.; Forsyth, M.; Scott, J. L.; MacFarlane, D. R. Liquids intermediate between “molecular” and “ionic” liquids: Liquid ion pairs?. Chem. Commun. 2007, 3817–3819.

    Google Scholar 

  12. Kim, J. K.; Matic, A.; Ahn, J. H.; Jacobsson, P. An imidazolium based ionic liquid electrolyte for lithium batteries. J. Power Sources 2010, 195, 7639–7643.

    Article  Google Scholar 

  13. Appetecchi, G. B.; Montanino, M.; Zane, D.; Carewska, M.; Alessandrini, F.; Passerini, S. Effect of the alkyl group on the synthesis and the electrochemical properties of N-alkyl- N-methyl-pyrrolidinium bis (trifluoromethanesulfonyl) imide ionic liquids. Electrochim. Acta 2009, 54, 1325–1332.

    Article  Google Scholar 

  14. McFarlane, D. R.; Sun, J.; Golding, J.; Meakin, P.; Forsyth, M. High conductivity molten salts based on the imide ion. Electrochim. Acta 2000, 45, 1271–1278.

    Article  Google Scholar 

  15. Shin, J. H.; Henderson, W. A.; Appetecchi, G. B.; Alessandrini, F.; Passerini, S. Recent developments in the ENEA lithium metal battery project. Electrochim. Acta 2005, 50, 3859–3865.

    Article  Google Scholar 

  16. Lewandowski, A.; Swiderska-Mocek, A. Ionic liquids as electrolytes for Li-ion batteries—An overview of electrochemical studies. J. Power Sources 2009, 194, 601–609.

    Article  Google Scholar 

  17. Kim, J. K.; Niedzicki, L.; Scheers, J.; Shin, C. R.; Lim, D. H.; Wieczorek, W.; Jacobsson, P.; Ahn, J. H.; Matic, A.; Jacobsson, P. Characterization of N-butyl-N-methylpyrrolidinium bis (trifluoromethanesulfonyl) imide-based polymer electrolytes for high safety lithium batteries. J. Power Sources 2013, 224, 93–98.

    Article  Google Scholar 

  18. Frö mling, T.; Kunze, M.; Schönhoff, M.; Sundermeyer, J.; Roling, B. Enhanced lithium transference numbers in ionic liquid electrolytes. J. Phys. Chem. B 2008, 112, 12985–12990.

    Article  Google Scholar 

  19. Saito, Y.; Umecky, T.; Niwa, J.; Sakai, T.; Maeda, S. Existing condition and migration property of ions in lithium electrolytes with ionic liquid solvent. J. Phys. Chem. B, 2007, 111, 11794–11802.

    Article  Google Scholar 

  20. Hayamizu, K.; Aihara, Y.; Nakagawa, H.; Nukuda, T.; Price, W. S. Ionic conduction and ion diffusion in binary roomtemperature ionic liquids composed of [emim][BF4] and LiBF4. J. Phys. Chem. B 2004, 108, 19527–19532.

    Article  Google Scholar 

  21. Zugmann, S.; Fleischmann, M.; Amereller, M.; Gschwind, R. M.; Wiemhöfer, H. D.; Gores, H. J. Measurement of transference numbers for lithium ion electrolytes via four different methods, a comparative study. Electrochim. Acta 2011, 56, 3926–3933.

    Article  Google Scholar 

  22. Kumar, B. Heterogeneous electrolytes: Variables for and uncertainty in conductivity measurements. J. Power Sources 2008, 179, 401–406.

    Article  Google Scholar 

  23. Bhattacharyya, A. J.; Maier, J.; Bock, R.; Lange, F. F. New class of soft matter electrolytes obtained via heterogeneous doping: Percolation effects in “soggy sand” electrolytes. Solid State Ionics 2006, 177, 2565–2568.

    Article  Google Scholar 

  24. Osinska, M.; Walkowiak, M.; Zalewska, A.; Jesionowski, T. Study of the role of ceramic filler in composite gel electrolytes based on microporous polymer membranes. J. Membrane Sci. 2009, 326, 582–588.

    Article  Google Scholar 

  25. Kim, J. K.; Scheers, J.; Park, T. J.; Kim, Y. Superior ionconducting hybrid solid electrolyte for all-solid-state batteries. ChemSusChem 2015, 8, 636–641.

    Article  Google Scholar 

  26. Blanga, R.; Golodnitsky, D.; Ardel, G.; Freedman, K.; Gladkich, A.; Rosenberg, Y.; Nathan M.; Peled, E. Quasisolid polymer-in-ceramic membrane for Li-ion batteries. Electrochim. Acta 2013, 114, 325–333.

    Article  Google Scholar 

  27. Ito, S.; Unemoto, A.; Ogawa, H.; Tomai, T.; Honma, I. Application of quasi-solid-state silica nanoparticles–ionic liquid composite electrolytes to all-solid-state lithium secondary battery. J. Power Sources 2012, 208, 271–275.

    Article  Google Scholar 

  28. Hori, M.; Aoki, Y.; Maeda, S.; Tatsumi, R.; Hayakawa, S. Thermal stability of ionic liquids as an electrolyte for lithium-ion batteries. ECS Trans. 2010, 25, 147–153.

    Article  Google Scholar 

  29. Hess, S.; Wohlfahrt-Mehrens, M.; Wachtler, M. Flammability of Li-ion battery electrolytes: Flash point and selfextinguishing time measurements. J. Electrochem. Soc. 2015, 162, A3084–A3097.

    Article  Google Scholar 

  30. Bloise, A. C.; Donoso, J. P.; Magon, C. J.; Rosario, A. V.; Pereira, E. C. NMR and conductivity study of PEO-based composite polymer electrolytes. Electrochim. Acta 2003, 48, 2239–2246.

    Google Scholar 

  31. Bhattacharyya, A. J.; Maier, J. Second phase effects on the conductivity of non-aqueous salt solutions: “Soggy sand electrolytes”. Adv. Mater. 2004, 16, 811–814.

    Article  Google Scholar 

  32. Asl, N. M.; Keith, J.; Lim, C.; Zhu, L. K.; Kim, Y. Inorganic solid/organic liquid hybrid electrolyte for use in Li-ion battery. Electrochim. Acta 2012, 79, 8–16.

    Article  Google Scholar 

  33. Inda, Y.; Katoh, T.; Baba, M. Development of all-solid lithium-ion battery using Li-ion conducting glass-ceramics. J. Power Sources. 2007, 174, 741–744.

    Article  Google Scholar 

  34. Lassè gues, J. C.; Grondin, J.; Aupetit, C.; Johansson, P. Spectroscopic identification of the lithium ion transporting species in LiTFSI-doped ionic liquids. J. Phys. Chem. A 2009, 113, 305–314.

    Article  Google Scholar 

  35. Kim, J. K.; Lim, D. H.; Scheers, J.; Pitawala, J.; Wilken, S.; Johansson, P.; Ahn, J. H.; Matic, A.; Jacobsson, P. Properties of N-butyl-N-methyl-pyrrolidinium Bis(trifluoromethanesulfonyl) imide based electrolytes as a function of lithium Bis(trifluoromethanesulfonyl) imide doping. J. Korean Electrochem. Soc. 2011, 14, 92–97.

    Article  Google Scholar 

  36. Duluard, S.; Grondin, J.; Bruneel, J. L.; Pianet, I.; Grélard, A.; Campet, G.; Delville, M. H.; Lassègues, J. C. Lithium solvation and diffusion in the 1-butyl-3-methylimidazolium bis (trifluoromethanesulfonyl) imide ionic liquid. J. Raman Spectrosc. 2008, 39, 627–632.

    Article  Google Scholar 

  37. Goodenough, J. B.; Kim, Y. Challenges for rechargeable Li batteries. Chem. Mater. 2010, 22, 587–603.

    Article  Google Scholar 

  38. Xu, K. Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chem. Rev. 2004, 104, 4303–4418.

    Article  Google Scholar 

  39. Kühnel, R. S.; Lübke, M.; Winter, M.; Passerini, S.; Balducci, A. Suppression of aluminum current collector corrosion in ionic liquid containing electrolytes. J. Power Sources 2012, 214, 178–184.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the 2017 Research Fund (No. 1.170012.01) of UNIST (Ulsan National Institute of Science and Technology) and Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (Nos. NRF-2014R1A1A2A16053515 and NRF-2016R1A2A2A07005334).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jae-Kwang Ki, Youngsik Kim or Jou-Hyeon Ahn.

Additional information

An erratum to this article is available at https://doi.org/10.1007/s12274-017-1784-z.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choi, H., Kim, H.W., Ki, JK. et al. Nanocomposite quasi-solid-state electrolyte for high-safety lithium batteries. Nano Res. 10, 3092–3102 (2017). https://doi.org/10.1007/s12274-017-1526-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-017-1526-2

Keywords

Navigation